Of Space Worms

Found this article recently, where they wanted to check how microscopic worms would do in space. Turns out, they do fine—in fact, they actually live longer in space! Additionally:

“We identified seven genes, which were down-regulated in space and whose inactivation extended lifespan under laboratory conditions,” Szewczyk said in a press release. This basically means that seven C. elegans genes usually associated with muscle aging were suppressed when the worms were exposed to a microgravity environment. Also, it appears spaceflight suppresses the accumulation of toxic proteins that normally gets stored inside aging muscle.

They’re not sure what the biological mechanisms might be behind this phenomenon.

I wonder, though—how much of it can be simple chemistry and fluid dynamics? We know that at small enough length scales (such as those of microscopic organisms) viscosity is a much stronger agent than inertia (governed by mass, and to an extent, gravity). Often, gravitational effects are ignored when doing small scale analyses. How do things change in the actual biology when gravity is really zero, not just as an approximation?

Also from the article:

“Most of us know that muscle tends to shrink in space. These latest results suggest that this is almost certainly an adaptive response rather than a pathological one. Counter-intuitively, muscle in space may age better than on Earth. It may also be that spaceflight slows the process of aging.”

I’m not sure why this seems novel. My thought has always been that muscle atrophy in space is due to lack of use, i.e. adaptation. This is why astronauts take special care to exercise their leg muscles while at the International Space Station. The legs no longer need to support the considerable weight of the human body, and the body efficiently starts optimizing its resources!

But perhaps (and most likely) my lack of knowledge allows me to simplify a phenomenon that a physiologist would find many angles to! I’d love to know those angles though—anyone reading this who can help?

Guess why the Russian spacecraft failed…

Remember the Russian spacecraft—headed for Mars—that failed mysteriously recently not long after takeoff? There were a few suggested reasons for the failure—such as effects due to cosmic rays from the sun, and the result of exposure to US radars

Well, turns out the reasons were more prosaic than that–the craft failed due to a programming error! Two channels of the onboard computer rebooted simultaneously—which evidently they were not supposed to do.

Amazing how the most complex missions can be undone by relatively simpler errors—remember the NASA Mars mission that failed due to a mistake in the units used?